Visuel de Data Science par la pratique
visibilityFeuilleter

Un ouvrage de référence pour les (futurs) data scientists. Nouvelle édition à paraître en Octobre 2021 !

Les bibliothèques, les frameworks, les modules et les boîtes à outils sont parfaits pour faire de la data science. Ils sont aussi un bon moyen de plonger dans la discipline sans comprendre la data science. Dans cet ouvrage, vous apprendrez comment fonctionnent les outils et algorithmes les plus fondamentaux de la data science, en les réalisant à partir de zéro.

Si vous êtes fort en maths et que vous connaissez la programmation, l'auteur, Joël Grus, vous aidera à vous familiariser avec les maths et les statistiques qui sont au coeur de la data science et à acquérir les compétences informatiques indispensables pour démarrer comme data scientist. La profusion des données d'aujourd'hui contient les réponses aux questions que personne n'a encore pensé à poser. Ce livre vous enseigne comment obtenir ces réponses.

Suivez un cours accéléré de Python.
Apprenez les fondamentaux de l'algèbre linéaire, des statistiques et des probabilités, et comprenez comment et quand les utiliser en data science.
Collectez, explorez, nettoyez, bricolez et manipulez les données.
Plongez dans les bases de l'apprentissage automatique.
Implémentez des modèles comme les k plus proches voisins, le Bayes naïf, les régressions linéaire ou logistique, les arbres de décision, les réseaux neuronaux et le clustering.
Explorez les systèmes de recommandation, le traitement du langage naturel, l'analyse de réseau, MapReduce et les bases de données.

A qui s'adresse cet ouvrage ?
Aux développeurs, statisticiens, étudiants et chefs de projet ayant à résoudre des problèmes de data science.
Aux data scientists, mais aussi à toute personne curieuse d'avoir une vue d'ensemble de l'état de l'art de ce métier du futur.

Titre Data Science par la pratique
Sous-titre Fondamentaux avec Python
Auteur(s) Joel Grus
Collection(s) Blanche
Editeur Eyrolles
Parution 11 mai 2017
Edition 1ère édition
Nb de pages 308 pages
Format 235 x 190 mm
Poids 646 g
EAN13 9782212118681
ISBN13 978-2-212-11868-1
ISBN10 2212118686
  • Introduction
  • Cours accéléré de Python
  • Visualisation des données
  • Algèbre linéaire
  • Statistique
  • Probabilités
  • Hypothèse et inférence
  • Descente de gradient
  • Collecte des données
  • Travail sur les données
  • Apprentissage automatique
  • k plus proches voisins
  • Classification naïve bayésienne
  • Régression linéaire simple
  • Régression linéaire multiple
  • Régression logistique
  • Arbres de décision
  • Réseaux neuronaux
  • Clustering
  • Traitement automatique du langage naturel
  • Analyse des réseaux
  • Systèmes de recommandation
  • Base de données et SQL
  • MapReduce
  • En avant pour la data science

Joel Grus

Joel Grus est ingénieur logiciel chez Google. Auparavant data scientist dans plusieurs start-up, il vit aujourd’hui à Seattle et participe régulièrement à des réunions de data scientists. Il blogue occasionnellement sur joelgrus.com et tweete toute la journée via le compte @joelgrus.

Visuel de Joel Grus