Visuel de Apprentissage machine
visibilityFeuilleter

Apprentissage machine et intelligence artificielle

L'apprentissage machine est l'un des domaines phares de l'intelligence artificielle. Il concerne l'étude et le développement de modèles quantitatifs permettant à un ordinateur d'accomplir des tâches sans qu'il soit explicitement programmé à les faire. Apprendre dans ce contexte revient à reconnaître des formes complexes et à prendre des décisions intelligentes. Compte tenu de toutes les entrées existantes, la complexité pour y arriver réside dans le fait que l'ensemble des décisions possibles est généralement très difficile à énumérer. Les algorithmes en apprentissage machine ont par conséquent été conçus dans le but d'acquérir de la connaissance sur le problème à traiter en se basant sur un ensemble de données limitées issues de ce problème.

Un ouvrage de référence

Cet ouvrage présente les fondements scientifiques de la théorie de l'apprentissage supervisé, les algorithmes les plus répandus développés suivant ce domaine ainsi que les deux cadres de l'apprentissage semi-supervisé et de l'ordonnancement, à un niveau accessible aux étudiants de master et aux élèves ingénieurs. Nous avons eu ici le souci de fournir un exposé cohérent reliant la théorie aux algorithmes développés dans cette sphère. Mais cette étude ne se limite pas à présenter ces fondements, vous trouverez ainsi quelques programmes des algorithmes classiques proposés dans ce manuscrit, écrits en langage C (langage à la fois simple et populaire), et à destination des lecteurs qui cherchent à connaître le fonctionnement de ces modèles désignés parfois comme des boîtes noires.

À qui s'adresse ce livre ?

  • Aux élèves ingénieurs, étudiants de master et doctorants en mathématiques appliquées, algorithmique, recherche opérationnelle, gestion de production, aide à la décision.
  • Aux ingénieurs, enseignants-chercheurs, informaticiens, industriels, économistes et décideurs ayant à résoudre des problèmes de classification, de partitionnement et d'ordonnancement à large échelle.
Titre Apprentissage machine
Sous-titre De la théorie à la pratique. Concepts fondamentaux en Machine Learning.
Auteur(s) Massih-Reza Amini
Collection(s) Algorithmes
Editeur Eyrolles
Parution 5 février 2015
Edition 1ère édition
Nb de pages 272 pages
Format 230 x 190 mm
Poids 601 g
EAN13 9782212138009
ISBN13 978-2-212-13800-9
ISBN10 2212138008
  • Introduction à la théorie de l'apprentissage
  • Algorithmes d'optimisation convexe non-contrainte
  • Classification bi-classes
  • Classification multi-classes
  • Apprentissage semi-supervisé
  • Apprentissage de modèles d'ordonnancement
  • Annexes (rappels de probabilités, code programmes)

Massih-Reza Amini

Massih-Reza Amini, professeur d’informatique à l’université Grenoble Alpes (UGA), est titulaire d’une thèse sur l’étude de nouveaux cadres et modèles d’apprentissage statistiques pour les nouvelles applications émergentes issues d’Internet. Il est co-auteur de plus d’une centaine d’articles scientifiques parus parmi les actes de conférences et de revues les plus prestigieux des domaines de l’apprentissage automatique...

Visuel de Massih-Reza Amini